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Preface 
Introduction section consists of images from previously published materials. The images 

have been included to better understand the thermal and hybrid Zero Liquid Discharge 

(ZLD) desalination processes and involved processes. The images are copyright of 

respective authors and none of these have been reproduced in this thesis by any means. 

Appropriate citing has been included to credit the original papers and authors and official 

permission has been taken, for each image, for reuse in this thesis. 
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Definitions 
The following are the list of definitions used in this document along with the units. 

D = Mass flowrate of distillate (kg/s) 

F = Mass flowrate of feed (kg/s) 

B = Mass flowrate of brine (kg/s) 

ṁ = Mass flowrate (kg/s) 

h = enthalpy (J/kg) 

X = salinity (g/kg) 

x = concentration of LiBr solution  

Q̇ = Heat transfer rate (kW) 

U = Heat transfer coefficient (kW/m2-K) 

A = Heat transfer area (m2) 

T = Temperature (K) 

ẇ = pumping work (kW) 

Cp,water = Specific heat of water (kJ/kg-K) 

Φ = Mass fraction 

P = Pressure (kPa) 

v = Specific volume (m3/kg) 
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Abstract 
State-of-the-art zero liquid discharge (ZLD) technologies are currently bound with either 

intensive use of high-grade electrical energy such as mechanical vacuum vapor 

compressors utilized in brine crystallizers or high capital cost with environmental concerns 

such as evaporation ponds. The present study aims to address these issues by an innovative 

desiccant-based ZLD system in which a multiple-effect distillation (MED) unit is uniquely 

embedded at the heart of an absorption-desorption system. Here, the MED and absorption 

systems are inherently coupled enabling both heat and mass transfer processes between a 

high-salinity water and a desiccant solution. The proposed technology employs an 

absorption-based thermally-driven vapor compressor concept to pressurize the vaporized 

brine of the ZLD unit from a low-pressure absorber to a high-pressure desorber. The 

vacuum environment required for the ZLD treatment is established by strong hygroscopic 

properties of an aqueous lithium bromide (LiBr) salt. This eliminates the need for energy-

intensive electrically-driven mechanical vapor compressors currently employed in 

advanced brine crystallizers. Comprehensive thermodynamic modeling has been 

performed to evaluate energy efficiency and size of the system. Insights gained from the 

present study have a high potential to truly transform thermal desalination and, in 

particular, ZLD treatment industries. 
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1 Introduction 
Freshwater scarcity due to population growth, pollution of water bodies, 

industrialization, and climate changes has imposed a major threat to future prospect of 

world economy, environmental sustainability, and human life quality [1–7]. Recycling and 

reuse of sea/brackish water through desalination has the ability to be considered as a 

potential solution for increasing global fresh water demands [8–12]. Existing conventional 

desalination technologies are highly energy intensive to purify saline water with high total 

dissolved solids (TDS) concentration values (TDS>100,000 ppm), and often unable to 

economically achieve ZLD operation desired in many industrial applications with high 

brine disposal costs [13–15]. Current ZLD technologies operate on the principle of 

evaporation process driven by energy-intensive mechanical vapor compression (MVC) 

[16–19]. The present study overcomes the drawback of high energy consumption of 

conventional ZLD systems by replacing the MVC driven evaporation process by an energy 

efficient thermally driven vapor compression evaporation process.  

1.1 Motivation 

Securing availability of clean and fresh water is a present challenge faced by many 

nations [20–25]. Over the past few decades, global fresh water demands have increased 

due to climate change, depletion of fresh water resources, pollution of fresh water bodies, 

industrialization, and increasing living standards among others [26–31]. Two-thirds of the 

world population (i.e., approximate 4 billion people) live in areas with severe water scarcity 

at least one month in a year with half a billion people facing water scarcity all year round 
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[32]. United Nations organization estimates that nearly 1800 million people will be under 

severe water scarcity by 2025 [33].  Increasing water pollution due to industrial pollution 

also becomes a cause of fresh water scarcity [34]. Industries such as chemical, 

pharmaceutical, textile, oil and gas eject huge amounts of liquid waste to surrounding water 

bodies causing massive water pollution both in developing and developed countries [35–

37]. In addition, water pollution could immensely affects quality of human lives and marine 

species [38–41]. It has been estimated that 940,000 child deaths occurred in 2016 alone 

worldwide because of polluted water consumption [42]. World Health Organization 

(WHO) projected that about 1.1 billion people globally drunk unsafe drinking water 

leading to about 3.1% of annual deaths [43]. Industrial water pollutions also put many 

marine species and water animals in endangered situations [44,45]. 

Desalination of sea/brackish has been considered as a potential solution for growing 

freshwater demands causing a considerable growth in the desalination industry in the past 

two decades [8–11]. Although sea/brackish water desalination has the ability to address the 

increasing fresh water demands, there are some major limitations associated with extensive 

usage of desalination systems. Current desalination technologies including reverse osmosis 

(RO), membrane desalination (MD), multiple-effect distillation (MED), electrodialysis 

(ED), electrodialysis reversal (EDR), ultrafiltation (UF) and nanofiltration (NF) have upper 

salinity limits beyond which they cannot treat the feedwater. Treating a concentrated 

rejected brine leaving a desalination system is a major problem. Concentrated brines have 

severe impacts on the environment and groundwater resources if not treated properly. 
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Economical costs associated with the brine treatment and/or disposal are very high today.  

ranging between 5 to 33% of total desalination cost [46]. The brine treatment and/or 

disposal costs depend on quality of concentrate, treatment level before disposal, type of 

disposal method used, and volume of concentrate handled [47].  

Current brine disposal technologies include surface water discharge, sewer 

discharge, deep-well injection, evaporation ponds, and land applications. The surface water 

discharge method includes direct disposal of brine into oceans, seas, rivers, lakes and other 

water bodies [48,49]. This method is adopted by majority of the off-shore seawater 

desalination plants. However, a continuous discharge of highly concentrated brines into the 

shoreline results in significant disruption of the marine life environment. The increased 

salinity levels along the coastal line could also lead to an intensified problem of seawater 

intrusion into coastal groundwater aquifers [50]. The effects of brine disposal into coastal 

and marine environments can be alleviated by disposing the brines further offshore to the 

sea or diluting before disposal. To protect 99% of marine species, the brine should be 

diluted by a factor of 40-fold before disposal [51].  

Application of the surface water discharge method is not a suitable option for inland 

brackish water desalination plants as inland water bodies contain high-quality water 

resources utilized for residential drinking applications. Sewer brine discharge method is a 

potential solution for inland desalination plants located near wastewater treatment plants. 

Here, brine leaving a desalination plant is treated by a waste water collection system [52]. 

The method, however, is only suitable for small-scale brackish water desalination plants 
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due to the potential adverse effect of high TDS rejected brines on the operation of waste 

water treatment plants [53]. High brine salinity levels hinder biological treatment processes 

employed in waste water treatment plants [54]. An alternative option for treatment of brine 

disposal in inland desalination plants is deep-well injection method. In the deep-well 

injection method, the brine is injected into a deep underground aquifer consisting of many 

layers of casting and grouting with impermeable rocks and clay [52,55]. The limiting factor 

of the deep-well injection method is pollution of surrounding water aquifers [56]. In 

addition, the deep-well injection method is not favorable at highly seismic locations due to 

the risk of groundwater pollution.  

Evaporation ponds are shallowed, lined basins in which brine is allowed to slowly 

evaporate by utilizing natural solar heat energy [57]. Evaporation ponds, however, require 

large areas of land and high capital costs with a limited treatment capacity. Evaporation 

ponds have also environmental concerns of polluting soil and groundwater resources. Land 

application is a brine disposal method in which the brine is sprayed onto salt-tolerant plants 

and grass [52,58]. The land application is dependent on seasonal demand, climate 

conditions, and suitable land availability. Limitations associated with the land application 

method include soil and groundwater pollution, effect on surrounding vegetation, and brine 

storage and distribution.  

Increased adverse effects associated with existing desalination techniques lead to 

imposition of new regulations on brine disposal [59,60]. The new regulations restrict usage 

of conventional brine discharge methods including the surface water discharge, deep-well 
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injection, land applications and evaporation ponds as they all have environmental concerns. 

The growing environmental concerns associated with current desalination systems have 

forced governments around the world to start imposing Zero Liquid Discharge (ZLD) 

regulations on chemical, pharmaceutical, and textile industries among others [16,61]. A 

ZLD system as its name implies eliminates liquid waste, thereby converting a brine stream 

into a  high-quality water stream and solid wastes [62,63]. The solid waste rejected from a 

ZLD plant could be further processed for useful applications including salt production, and 

mineral extraction. The ZLD desalination of sea/brackish water bodies has the potential to 

limit industrial water pollution, thus being a promising solution for the growing global 

water demand [64–66].   

1.2 Literature review 

Early ZLD systems were standalone thermal systems. In these systems, the seawater is 

initially pretreated for pH adjustment reducing the scaling potential of metal pipes and heat 

 
Figure 1.1. A schematic diagram of a thermal ZLD system (Copyright of Muhammad Yaqub et al. [18]). 
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exchangers utilized. The pH adjusted seawater is then evaporated in two core components 

called brine concentrator and brine crystallizer as shown in Fig.1.1 [16,18]. 

Brine concentrators generally employ a mechanical vapor compression process to 

evaporate the feed brine. A brine concentrator utilizes a bundle of vertical heat transfer 

tubes creating thin film evaporation on internal tube surfaces. Here, the feed brine mixed 

with recirculating brine slurry is pumped to top of the tube bundle for the internal thin film 

evaporation process. Formation of the thin films enhances the heat transfer rate, thereby 

reducing the compression ratio and energy consumption of compressor employed [67]. 

Calcium sulfate seeds are often added to avoid salt precipitation and subsequent scale 

formation on the heat transfer tubes [68,69]. The generated steam flows down in the same 

direction as the brine to the bottom of the brine concentrator through a concurrent thin film 

evaporation mechanism. The brine reaching the bottom sump recombines with the brine 

slurry as well as incoming feed and then again pumped to the top of the brine concentrator. 

The distillate vapor is passed through mist demisters for removal of any brine traces before 

entering a mechanical vapor compressor (MVC). The vapor compressor slightly increases 

the vapor pressure and pumps the distillate vapor to the shell side of the heat transfer tubes 

of brine concentrator. The superheated distillate vapor condenses on the outer surface of 

heat transfer tubes. The latent heat of the condensation process supplies latent heat required 

for thin film evaporation of the brine slurry flowing inside the tubes. The condensate water 

collected as the distillate product is then send to a heat exchanger to preheat the incoming 

feed. The typical energy consumption of the MVC brine concentrators are 20-39 kWhe/m3 
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of the distillate product [68,70]. A brine concentrator could treat feed waters to a salinity 

concentration of about 250,000 mg/L with recovery ratios of 90-98% with TDS values of 

less than 10mg/L [16]. The MVC brine crystallizers have high energy consumptions 

combined with high capital costs of expensive materials including titanium and stainless 

steel which are essential to prevent corrosion on heat transfer surfaces [69,71,72]. 

The concentrated brine rejected from the brine concentrator is sent to the brine 

crystallizer for complete water removal and salt crystallization formation processes. 

Similar to the brine concentrators, the brine crystallizers employ a mechanical vapor 

compression process for water evaporation. Vapor compression driven crystallizers usually 

operate in a forced circulation mode. In the forced circulation mode, the concentrated 

viscous brine is pumped and recirculated through submerged heat exchanger tubes at high 

pressures to avoid boiling and subsequent scaling/fouling on the tube surfaces [69]. The 

typical energy consumption of the brine crystallizers is as high as 52-66 kWhe/m3 of the 

 
Figure 1.2. A schematic diagram of a RO incorporated ZLD system (Copyright of Muhammad Yaqub et al. 

[18]). 
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treated water [68]. This is almost three times of that of the brine concentrators. Although 

brine crystallizers consume a significant amount of energy, they are an integral part of a 

ZLD system due to limited alternative mechanisms for reliable treatment of brines with 

very high salinities and viscosities.   

Evaporation ponds could be considered as a competitive alternative for brine 

crystallizers [73]. Evaporation ponds utilize natural solar energy to evaporate the water 

from the brine. In general, they are  a viable alternative solution for treatment of small brine 

quantities at locations with high solar availability and inexpensive lands [74]. Despite of 

being highly energy efficient, there are major limiting factors hindering the extensive usage 

of evaporation ponds in ZLD systems. One such limiting factor is requirement of large area 

of land. In a hypothetical scenario of a ZLD desalination in Las Vegas, Nevada, the cost of 

land procurement excluding infrastructure was estimated to be three times that of the total 

cost associated with a brine concentrator followed by a brine crystallizer [75]. Another 

major concern with evaporation ponds is hazardous leakage of solid waste to the 

groundwater and environment [48,73,75–79].  

Although brine concentrators and brine crystallizers are energy intensive, they are 

inevitable in large-scale economical ZLD systems where usage of evaporation ponds is not 

a viable option.  Consequently, research in ZLD systems has focused on reducing volume 

of concentrated brine entering the brine crystallizers and concentrators. This could be 

achieved by appropriate pre-treatment processes. Reverse osmosis (RO), a well-

established, pressure-driven, membrane-based desalination technique with excellent 
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energy efficiency has been incorporated into ZLD systems to reduce the energy 

consumption (cf. Fig. 1.2). Unlike the thermal processes, the feed in the RO systems does 

not need to undergo a phase change process, thereby decreasing the energy consumption 

of the system to a large extent.  

The reverse osmosis process utilizes  semi-permeable polymeric membranes with high 

selectivity for solvent molecules (i.e., pure water) while blocking solute molecules (i.e., 

dissolved salt ions). If the feed water and pure water are separated by such a membrane, 

flow naturally occurs from the high water potential side (i.e., low salt concentration) to the 

low water potential side (i.e., high salt concentration or feedwater), thus balancing the salt 

concentrations on both sides. By applying a pressure on the feedwater higher than the 

normal osmotic pressure, the flow will be reversed and pure water from the feedwater side 

flows towards the pure water side leaving concentrated feed on the feed side. The operating 

pressure for seawater desalination is around 55 to 68 bar [80]. The operating pressure for 

brackish water desalination will be less than that of seawater due to lower osmotic pressure 

caused by a lower feed salinity level. The typical energy consumption of a RO system for 

50% recovery is 2 kWhe/m3 of the distillate product water which is much lower than that 

of brine concentrators and crystallizers [81]. Incorporating RO systems for pre-

concentrating brine has showed 58-75% reduction in energy and 48-67% reduction in 

treatment cost compared to standalone brine concentrator combined with evaporation 

ponds based systems [82,83].  
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Although implementation of a RO system increases the overall system efficiency, there 

are several limiting factors and issues associated with the RO process. One such major 

issue is membrane fouling leading to (i) an increased required operating pressure, (ii) a 

reduction in water flux, and (iii) a decrease in membrane useful lifetime [84–87]. The 

fouling problem is more severe in ZLD systems compared to seawater and brackish reverse 

osmosis processes as the feed is concentrated to significantly higher levels in ZLD systems. 

To overcome the fouling problem in RO incorporated ZLD systems, extensive pre-

treatment processes including 

chemical softening, pH 

adjustments, and ion-exchange 

need to be done. These 

pretreatment processes involve 

intensive use of chemicals which 

further produce solid waste as 

well as increased operational costs.  

 
Figure 1.3. Salinity concentration limits of different desalination 

technologies (Copyright of  Jheng- Han Tsai et al. [78]). 
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Furthermore, current RO modules cannot operate at very high operating pressures 

limiting the upper salinity limit of the RO brine to 75,000 mg/L [78]. This salinity is much 

lower than that of a brine concentrator (250,000 mg/L). This indicates that standalone RO 

systems cannot treat brines to the extent of a brine concentrator module. Therefore, a RO 

process is usually followed by a brine concentrator in RO incorporated ZLD systems 

[68,82]. Implementation of new desalination technologies such as membrane distillation, 

nano-filtration, ultra-filtration, electrodialysis, and forward osmosis among others into 

ZLD systems showed a pathway to pre-concentrate a feed water beyond the salinity limits 

of a RO system (cf. Fig. 1.3, and figure 1.4) [18,78,88–95]. A techno-economic comparison 

between membrane distillation (MD) and mechanical vapor compression in a ZLD system 

showed a 40% cost reduction compared to the MVC method [96].  

A study reported by Kavithaa Loganathan et al. [97] demonstrated a pilot scale ZLD 

treatment of a basal aquifer water with high scaling/fouling potential and average TDS of 

21,300 mg/L using a hybrid electrodialysis reversal (EDR) and reverse osmosis (RO) 

 
Figure 1.4.  Different configurations of membrane-based ZLD systems (Copyright of Jheng-Han Tsai [78]). 
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followed by a brine crystallizer. Pre-treatment through sedimentation and ultrafiltration 

was found to be effective in removing suspended solids and turbidity. Further treatment of 

EDR-RO showed a recovery ratio of about 77% with concentrations up to 125,000mg/L 

followed by a brine crystallizer for near ZLD operation. In an another study, Kavithaa 

Loganathan et al. [98] reported a pilot scale ZLD system for treating basal water 

incorporated with RO and UF pretreatment processes. The UF pretreatment was found 

effective in removing suspended solids, as well as nearly 50% of oil and grease from the 

feed, thereby enabling the RO to operate at higher recovery ratios prior to evaporation-

crystallization.  

In a recent study, Kang Jia Lu et al. [99] demonstrated a novel design of a ZLD 

desalination system consisting of freeze desalination, membrane distillation followed by a 

crystallization unit. In this study, a modeled seawater with 3.5 wt% NaCl is considered. It 

was found that favorable operating conditions for a minimum overall energy consumption 

are a high feedwater temperature and concentration, a low distillate temperature and a large 

recovery ratio. Hanfei Guo et al. [100] simulated a flat sheet air gap membrane distillation 

coupled with an evaporative crystallizer for a ZLD water desalination treatment. 

Simulation results showed that NaCl mass fraction has a strong influence on system heat 

duty. The optimum operating condition with a minimum input energy was determined and 

the value of input energy was 1651.5 kJ/kg of product water. Guizi Chen et al. [101] 

investigated optimized operating parameters for a continuous membrane distillation 

crystallization (CMDC) zero liquid discharge process with 26.7% NaCl feed solution. 
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Their results showed that flowrates of the feed and permeate sides have a major impact on 

performance of the CMDC than temperatures of the feed and permeate sides. They also 

found that feed flowrate and temperature have a major influence on formed crystal size and 

distribution. Studies presented above only found ways to treat the brine efficiently before 

entering a crystallizer unit. None of them, however, were able to reduce energy 

consumption of the crystallization process. 

An alternative emerging technology for treatment of concentrated brines is Wind Aided 

Intensified eVaporation (WAIV). WAIV is a thermal-based technology for evaporation of 

distillate from the brine slurry. In this technology, the concentrated brine is allowed to flow 

through densely packed wetted surfaces over which pressurized air is blown to evaporate 

the distillate from the brine. Oren et al. [102] developed a pilot scale model of WAIV to 

treat RO-EDR brines to the zero liquid discharge operation. Results showed that the WAIV 

unit produced final brines to a TDS of more than 300 mg/L and was able to recover mineral 

by-products such as magnesium salts. In another study, Macedonio et al. [103] studied the 

integration of a Reverse Osmosis - Membrane Crystallizer (RO-MCr) system with WAIV. 

The study reported that the system is able to reach a recovery ratio of 88.9% and limit the 

brine discharge to less than 0.27% of the feed. A full-scale demonstration of WAIV in 

Roma (Queensland) showed that the performance of WAIV is at least 10 times higher than 

the conventional evaporation ponds [104]. Although the WAIV technology enables to treat 

concentrated brines, water evaporated from a WAIV system cannot be harvested, thereby 

making no contribution to improvement of water recovery efficiency of the system. 
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The present thesis examines an alternative pathway substituting an energy-intensive 

MVC-driven brine crystallizer with an energy-efficient thermal vapor compression brine 

crystallizer concept. The proposed system relies on a high efficiency sorption-based ZLD 

distillation system to efficiently and economically distill water with high TDS content for 

mobile or semi mobile applications. The new ZLD system consists of a multi effect 

distillation (MED) unit embedded at the heart of a Lithium Bromide (LiBr) absorption-

desorption system. The MED and LiBr units could exchange both heat and mass transfer 

processes. The system employs an absorption-based thermally-driven vapor compressor 

concept to pressurize vaporized brine of the ZLD unit from a low-pressure absorber to a 

high-pressure desorber environment. The vacuum environment required for the ZLD 

operation is established by the strong hygroscopic properties of aqueous LiBr salt. This 

eliminates the need for energy-intensive electrically-driven mechanical vapor compressors 

currently employed in advanced brine crystallizers. A detailed thermodynamic analysis of 

the system has been performed using a simultaneous equation solver called EES 

(Engineering Equation solver). Specific energy consumption, overall gained output ratio 

(GOR) and overall heat transfer coefficient of the system have been evaluated as a 

functions of recovery ratio (RR) of the MED unit, and number of the MED effects.  
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2 Concept 
This research addresses the shortcomings inherent to current ZLD techniques by an 

innovative sorption-based concept in which a multiple-effect distillation (MED) unit is 

uniquely embedded at the heart of an absorption-desorption system. Contrary to current 

energy-intensive approaches, the proposed technology employs an absorption-based 

thermally-driven vapor compressor concept to create a low vapor pressure environment 

required for the ZLD treatment. Here, the ZLD operation is realized by the absorption 

process in which the brine discharged from the final MED effect is vaporized and then 

absorbed by a strong hygroscopic Lithium Bromide (LiBr) solution. The sub-atmospheric 

pressure of the crystallizer unit (4 kPa) at which both evaporation and absorption processes 

occur is determined by the equilibrium water vapor pressure of the LiBr solution. The 

desiccant solution is then pumped to a high-pressure desorber for subsequent desorption 

and condensation processes. This eliminates the need for energy-intensive electrically-

driven mechanical vapor compressors currently employed in advanced brine crystallizers. 

In addition, the equilibrium temperature of the LiBr solution is almost 20-30°C higher than 

the equilibrium temperature of the brine slurry being vaporized for typical operating 

pressures. Despite the accompanying boiling point elevation, this temperature lift partially 

compensates the temperature drop between MED effects, thereby further improving the 

thermal desalination efficiency of the system. 
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Fig. 2.1 illustrates a detailed model of the proposed ZLD technology. The system 

consists of three main units: i) a forced-circulation (FC) ZLD unit, ii) a forward feed MED 

unit, and iii) an aqueous LiBr desorption unit. The ZLD unit is comprised of absorber, FC 

heat exchanger, and brine crystallizer modules. The thermal vapor compression process 

starts in the absorber module of the ZLD unit where the concentrated brine slurry leaving 

the last MED effect is vaporized and exothermically absorbed by the LiBr solution (cf. Fig. 

2.1). Once the water vapor is absorbed, the weak LiBr solution is pumped from the ZLD 

unit to the desorption unit (DU). The water vapor is then endothermically desorbed and 

subsequently condensed and withdrawn from the system. Thermal energy required for the 

desorption process is supplied by an external heat source such as a hot steam line. The 

strong LiBr solution leaving the DU flows back to the absorber of the ZLD unit to complete 

the LiBr-water mixture loop. 

Latent heat released in the condenser module of the DU and absorption heat generated 

in the ZLD unit are collected by a closed thermal water loop to drive the first MED effect 

and FC heat exchanger. Latent heat associated with the condensing distillate vapor of each 

MED effect is successively utilized to drive subsequent MED effects. The vapor produced 

in the last MED effect is condensed in the forced-circulation brine heat exchanger. In the 

Figure 2. 1. A schematic diagram of the proposed sorption-based ZLD distillation system. 
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ZLD unit, the brine slurry is circulated between the crystallizer maintained at a low vapor 

pressure and the FC heat exchanger operating at a high brine pressure. The low-pressure 

environment of the crystallizer module is established by the strong LiBr solution. A higher 

operating pressure of the brine heat exchanger minimizes scaling and clogging issues and 

allows superheating of the brine slurry. Here, the brine is concentrated beyond solubility 

limit of contaminants resulting in formation of salt crystals. Vaporized water is also 

absorbed into the LiBr solution to enable the ZLD operation which complete the sorption 

loop. 
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3 Thermodynamic modeling 
A thermodynamic model of the system is developed using Engineering Equation Solver 

(EES) to evaluate energy consumption of the proposed technology. EES is a powerful 

simultaneous equation solver that includes a data base of the necessary thermophysical 

properties of working fluids employed in the system. The thermodynamic model includes 

the entire system shown in Fig. 2.1. The model developed by Mistry et al. [105] is used to 

formulate the MED sub-system. Seawater properties are estimated as a function of 

temperature and salinity [106,107].  Produced Distillate water is modeled as seawater with 

zero salinity. The vapor phase water properties are calculated using the Steam_IAPWS 

library in EES. EES uses IAPWS 1995 formulation for thermodynamic properties of 

ordinary water substance for general and scientific use [108].  

The following assumptions are made to perform the thermodynamic modeling of the 

system: 

1. All involved processes are assumed to be at steady-state. 

2. Distillate water generated from the system is pure (i.e., the salinity of the distillate 

is (0 g/kg). 

3. Seawater is incompressible and thermohydraulic properties are only functions of 

temperature and salinity. 

4. Energy and pressure losses are negligible. 

5. The solution leaving the absorber and desorber modules is at vapor-liquid 

equilibrium state.  
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Modeling of each individual component is described in details below. 

3.1 Modeling of the ZLD unit 

The operation of the ZLD unit is central to the proposed desalination system. Fig. 3.1 

shows a schematic of the ZLD unit. The brine from the last MED effect (Bn) enters the FC 

heat exchanger to get super-heated beyond the saturation temperature of the brine 

crystallizer. The FC brine heat exchanger is heated by the condensing distillate vapor of 

the last MED effect and the closed water loop leaving the first MED effect. In the brine 

crystallizer, the brine becomes supersaturated by the LiBr solution absorbing the water 

vapor. Here, the excess solute results in formation of salt crystals that are continuously 

precipitated and removed from the brine slurry. The sub-atmospheric pressure of the brine 

crystallizer at which both evaporation and absorption processes occur is determined by the 

equilibrium water vapor pressure of the LiBr solution. The condensing distillate water in 

the FC brine heat exchanger (𝐷𝐷𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) is the sum of the distillate vapor generated in the last 

MED effect (𝐷𝐷𝑛𝑛) and the flashed distillate vapor from the last flash box (𝐷𝐷𝑓𝑓𝑓𝑓𝑛𝑛). 

𝐷𝐷𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑚̇𝑚16 = 𝐷𝐷𝑛𝑛 + 𝐷𝐷𝑓𝑓𝑓𝑓𝑛𝑛 (3.1) 

The net feed brine entering the crystallizer (FBC) is equal to the brine leaving the last 

MED effect (Bn). Therefore, the total mass and salt balance equations for the brine 

crystallizer can be expressed as: 

𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐵𝐵𝑛𝑛 = 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐷𝐷𝐵𝐵𝐵𝐵 (3.2) 
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𝐹𝐹𝐵𝐵𝐵𝐵𝑋𝑋𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵 (3.3) 

where 𝐹𝐹𝐵𝐵𝐵𝐵 is the feed stream of the brine crystallizer, 𝐵𝐵𝐵𝐵𝐵𝐵 is the solid crystal salts rejected 

from the system, 𝐷𝐷𝐵𝐵𝐵𝐵is the distillate vapor generated in the brine crystallizer, 𝑋𝑋𝐹𝐹𝐵𝐵𝐵𝐵 is the 

salinity of  the feed entering, and 𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵 is the salt concentration for a full distillated water 

removal process. At full ZLD operation, the recovery ratio (RR) defined as the desalinated 

water volume to the feed seawater volume is 95.6% (i.e., 100% ZLD operation). 

The combined energy balance equation for the FC heat exchanger and the brine 

crystallizer modules can be written as: 

𝐷𝐷𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹∆ℎ𝐷𝐷𝑐𝑐
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑚̇𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑟𝑟(𝑇𝑇12 − 𝑇𝑇13) =  𝐷𝐷𝐵𝐵𝐵𝐵ℎ𝐷𝐷𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐹𝐹𝐵𝐵𝐵𝐵ℎ𝐹𝐹𝐵𝐵𝐵𝐵 (3.4) 

where ∆ℎ𝐷𝐷𝑐𝑐
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is enthalpy changes of the condensing distillate vapor, ℎ𝐷𝐷𝐵𝐵𝐵𝐵 is enthalpy of 

the distillate vapor generated in the crystallizer, ℎ𝐵𝐵𝐵𝐵𝐵𝐵 is enthalpy of the salt crystals leaving 

the brine crystallizer, and ℎ𝐹𝐹𝐵𝐵𝐵𝐵 is enthalpy of the feed brine entering the crystallizer.  

The tube surface area of the FC heat exchanger (AFCHX) can be also estimated as 

follows: 

𝐷𝐷𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹∆ℎ𝐷𝐷𝑐𝑐
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑚̇𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑇𝑇12 − 𝑇𝑇13) = 𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�𝑇𝑇𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹� (3.5) 

where 𝑇𝑇𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the average tube-side temperature of the FC heat exchanger, and 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is 

the average shell-side temperature of the FC heat exchanger. 
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The Absorber module provides the partial vacuum environment required for the ZLD 

operation. Part of the distillate vapor generated in the brine crystallizer is absorbed by the 

strong LiBr solution and the remaining distillate vapor is condensed in the ZLD condenser 

module (cf. Fig. 3.1). The heat of the exothermic absorption process is collected by the 

closed thermal water loop.  

The amount of water vapor 

absorbed by the LiBr solution 

(∅DBC) is defined by the heat 

required for the first MED 

effect and the ZLD unit.  

The mass balance equations between the streams of the absorber can be written as: 

𝑚𝑚𝑚15 = ∅𝐷𝐷𝐵𝐵𝐵𝐵 (3.6) 

𝑚̇𝑚1 = 𝑚̇𝑚15 + 𝑚̇𝑚6 (3.7) 

𝑚̇𝑚1𝑥𝑥1=𝑚̇𝑚6𝑥𝑥6 (3.8) 

where 𝑚̇𝑚15 is mass flowrate of the distilled vapor absorbed by the LiBr solution, and ∅ is 

mass fraction of the distillate vapor absorbed. Here, 𝑚̇𝑚1 is mass flowrate of the LiBr 

solution leaving the absorber module, 𝑚̇𝑚6 is mass flowrate of the LiBr solution entering 

the absorber module, and 𝑥𝑥1 and 𝑥𝑥6 are their respective LiBr concentration values. 

Figure 3. 1. A schematic of the ZLD unit consisting of the FC heat 
exchanger, brine crystallizer, absorber, and ZLD condenser modules. 
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Similarly, the energy balance equations between the streams entering and leaving the 

absorber module can be written as: 

𝑄̇𝑄𝑎𝑎 = −𝑚̇𝑚1ℎ1 + 𝑚̇𝑚15ℎ15 + 𝑚̇𝑚6ℎ6 (3.9) 

𝑄̇𝑄𝑎𝑎 = 𝑚̇𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑇𝑇14 − 𝑇𝑇13) (3.10) 

𝑄̇𝑄𝑎𝑎 = 𝑈𝑈𝑈𝑈𝑎𝑎 ((𝑇𝑇6 − 𝑇𝑇14) − (𝑇𝑇1 − 𝑇𝑇13)) (𝑙𝑙𝑙𝑙
𝑇𝑇6 − 𝑇𝑇14
𝑇𝑇1 − 𝑇𝑇13

)�  (3.11) 

where 𝑄̇𝑄𝑎𝑎 is heat of the absorption process, ℎ1 is enthalpy of the LiBr solution leaving the 

absorber, ℎ15 is enthalpy of the distillate vapor absorbed, and ℎ6 is enthalpy of the LiBr 

solution entering the absorber module. In addition, 𝑇𝑇13 and 𝑇𝑇14 are temperatures of the 

cooling water loop entering and leaving the absorber module, respectively. 

The remaining distillate vapor produced in the ZLD unit ((1 − ∅)𝐷𝐷𝐵𝐵𝐵𝐵) is condensed in 

the ZLD condenser module cooled by the feed seawater. Usually excess seawater is 

required for handling the cooling load of the condenser. From the seawater, required feed 

is sent to the MED unit as feed and the remaining excess seawater is rejected back to the 

seawater source. The condensed distillate vapor is then removed as the product distillate 

water. The energy balance equations for the ZLD condenser  

(1 − ∅)𝐷𝐷𝐵𝐵𝐵𝐵∆ℎ𝐷𝐷𝐵𝐵𝐵𝐵 = 𝑚̇𝑚𝑠𝑠𝑠𝑠(ℎ𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 )  (3.12) 

𝑚̇𝑚𝑠𝑠𝑠𝑠(ℎ𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 )= 𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �Tswout − Tswin � �𝑙𝑙n 𝑇𝑇𝐷𝐷
𝐵𝐵𝐵𝐵−∆ℎ𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖

𝑇𝑇𝐷𝐷
𝐵𝐵𝐵𝐵− ∆ℎ𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜

��   (3.13) 
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where ∆ℎ𝐷𝐷𝐵𝐵𝐵𝐵 is the latent heat of evaporation of the distillate vapor, 𝑚̇𝑚𝑠𝑠𝑠𝑠 is mass flowrate 

of the seawater required for condensation, 𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the condenser overall heat transfer 

coefficient, and 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is area of the ZLD condenser. In addition, ℎ𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , and ℎ𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 are 

enthalpies of the seawater at the inlet and outlet of the condenser module, respectively. 

3.2 Modeling of the desorption unit 

A schematic of the desorption unit (DU) is depicted in Fig. 3.2. The weak LiBr solution 

leaving the absorber module is pumped to the desorption unit in which the strong desiccant 

solution is regenerated. A hot condensing steam line supplies the heat required for the water 

vapor rejection process. The cold weak and the hot strong LiBr solution streams exchange 

heat in a solution heat exchanger positioned between the absorber and desorber modules, 

thereby reducing desorber heat input. The desorbed water vapor is condensed in the DU 

condenser module. The latent heat of the condensation process is collected by the closed 

water circulation loop before entering the 

first MED effect. The condensed distillate 

water is continuously withdrawn from the 

system. The mass and concentration 

balance equations of the desorption unit can 

be summarized as: 

𝑚̇𝑚1 = 𝑚̇𝑚2 = 𝑚̇𝑚3, 𝑚̇𝑚4 = 𝑚̇𝑚5 = 𝑚̇𝑚6, 𝑚̇𝑚3 = 𝑚̇𝑚4 + 𝑚̇𝑚7, 𝑚̇𝑚7 = 𝑚̇𝑚8 (3.14) 

 
Figure 3. 2. A schematic of the desorption unit. 
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𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3, 𝑥𝑥4 = 𝑥𝑥5 = 𝑥𝑥6 (3.15) 

𝑚̇𝑚3𝑥𝑥3 = 𝑚̇𝑚4𝑥𝑥4 (3.16) 

where 𝑚̇𝑚𝑖𝑖 and 𝑥𝑥𝑖𝑖 represent mass flowrate and LiBr concentration, respectively.  

The energy balance equations across individual components of the desorption unit are 

expressed as: 

𝑤̇𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑣𝑣1(𝑝𝑝2 − 𝑝𝑝1) = 𝑚̇𝑚2ℎ2 − 𝑚̇𝑚1ℎ1 (3.17) 

ℎ5 = ℎ6 (3.18) 

𝑄̇𝑄𝑠𝑠ℎ𝑥𝑥 = 𝑚̇𝑚2(ℎ3 − ℎ2) = 𝑚̇𝑚4(ℎ4 − ℎ5)

= 𝑈𝑈𝑠𝑠ℎ𝑥𝑥𝐴𝐴𝑠𝑠ℎ𝑥𝑥 ((𝑇𝑇4 − 𝑇𝑇3) − (𝑇𝑇5 − 𝑇𝑇2)) (𝑙𝑙𝑙𝑙
𝑇𝑇4 − 𝑇𝑇3
𝑇𝑇5 − 𝑇𝑇2

)�  

(3.19) 

𝑄̇𝑄𝑑𝑑 = −𝑚̇𝑚3ℎ3 + 𝑚̇𝑚4ℎ4 + 𝑚̇𝑚7ℎ7 = 𝑚̇𝑚9ℎ𝑓𝑓𝑓𝑓 =

𝑈𝑈𝑑𝑑𝐴𝐴𝑑𝑑 ((𝑇𝑇9 − 𝑇𝑇4) − (𝑇𝑇10 − 𝑇𝑇7)) (𝑙𝑙𝑙𝑙 𝑇𝑇9−𝑇𝑇4
𝑇𝑇10−𝑇𝑇7

)�   

(3.20) 

𝑄̇𝑄𝐷𝐷𝐷𝐷−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚̇𝑚7ℎ7 − 𝑚̇𝑚8ℎ8 = 𝑚̇𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑇𝑇11 − 𝑇𝑇14)

= (𝑈𝑈𝑈𝑈)𝐷𝐷𝐷𝐷−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ((𝑇𝑇8 − 𝑇𝑇14) − (𝑇𝑇8 − 𝑇𝑇11)) (𝑙𝑙𝑙𝑙
𝑇𝑇8 − 𝑇𝑇14
𝑇𝑇8 − 𝑇𝑇11

)�  

(3.21) 
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where 𝑤̇𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑄̇𝑄𝑠𝑠ℎ𝑥𝑥, 𝑄̇𝑄𝑑𝑑, 𝑄̇𝑄𝐷𝐷𝐷𝐷−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, ℎ𝑖𝑖, and ℎ𝑓𝑓𝑓𝑓 are work input of the pump, heat exchanged 

in the solution heat exchanger, heat exchanged in the desorber module, heat exchanged in 

the condenser module, enthalpy, and enthalpy of condensation respectively. 

3.3 Modeling of the MED unit 

Effect is the primary component of the MED unit. Fig. 3.3 shows a schematic of a MED 

effect indicating incoming and outgoing streams. In each effect, an incoming feed brine 

(F) is partially vaporized dividing the feed stream into a concentrated brine (B) and a 

distillate vapor (D) stream. The thermal energy required for the evaporation process is 

supplied by latent heat of condensing distillate vapor (Dc) generated in the preceding effect. 

Since the operating pressure of each effect is slightly below the saturation pressure, the 

distillate vapor generated in each effect is a combination of flash evaporation (Df) and 

boiling (Db). The portion of the feed brine before the boiling process is called the brine 

within effect (Bwe). Therefore, a portion of the brine within each effect is vaporized forming 

the distillate due to boiling (Db) and the concentrated brine (B). The mass and salt balance 

equations between the incoming and outgoing streams can be written as: 

𝐹𝐹 = 𝐵𝐵 + 𝐷𝐷  (3.22) 

𝐷𝐷 = 𝐷𝐷𝑓𝑓 + 𝐷𝐷𝑏𝑏 (3.23) 

𝐹𝐹 = 𝐵𝐵𝑤𝑤𝑤𝑤 + 𝐷𝐷𝑓𝑓 (3.24) 
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𝐹𝐹𝑋𝑋𝐹𝐹 = 𝐵𝐵𝑋𝑋𝐵𝐵 (3.25) 

𝐹𝐹𝑋𝑋𝐹𝐹 = 𝐵𝐵𝑤𝑤𝑤𝑤𝑋𝑋𝐵𝐵𝑤𝑤𝑤𝑤 (3.26) 

where F, B, D, 𝐵𝐵𝑤𝑤𝑤𝑤, 𝐷𝐷𝑓𝑓 and 𝐷𝐷𝑏𝑏 are mass flowrates of the brine feed entering the effect, the 

brine leaving the effect, the distillate vapor generated in the effect, the brine within the 

effect, the distillate vapor generated by flash evaporation and the distillate vapor generated 

by boiling, respectively. Also, 𝑋𝑋𝐹𝐹, 𝑋𝑋𝐵𝐵 and 𝑋𝑋𝐵𝐵𝑤𝑤𝑤𝑤 are salinity of the feed, the brine leaving 

the effect and the brine within the effect, respectively. 

The energy balance equations between the streams entering and leaving each effect can 

be also expressed as: 

𝐷𝐷𝑐𝑐∆ℎ𝐷𝐷𝑐𝑐 + 𝐹𝐹ℎ𝐹𝐹 = 𝐷𝐷ℎ𝐷𝐷 + 𝐵𝐵ℎ𝐵𝐵 (3.27) 

𝐹𝐹ℎ𝐹𝐹 = 𝐵𝐵𝑤𝑤𝑤𝑤ℎ𝐵𝐵𝑤𝑤𝑤𝑤 + 𝐷𝐷𝑓𝑓ℎ𝐷𝐷𝑓𝑓 (3.28) 

where 𝐷𝐷𝑐𝑐  is mass flow rate of the condensing distillate entering the effect, ∆ℎ𝐷𝐷𝑐𝑐 is enthalpy 

changes of the condensing distillate, ℎ𝐷𝐷 is enthalpy of the distillate vapor generated in the 

effect, ℎ𝐵𝐵 is enthalpy of the brine leaving the effect, ℎ𝐹𝐹 is enthalpy of the feed entering the 

effect, ℎ𝐵𝐵𝑤𝑤𝑤𝑤 is enthalpy of the brine within the effect, and ℎ𝐷𝐷𝑓𝑓 is enthalpy of the distillate 

generated due to flashing. It should be mentioned that there is no flash evaporation 

associated with the first effect (Df, 1st effect=0) since the feed seawater brine entering the first 

effect is at a subcooled condition. In addition, the heat required for evaporation of the feed 



www.manaraa.com

27 

 

brane of the first effect is supplied by the closed water circulation loop. Therefore, the 

energy balance for the first effect can be modified as:  

 𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑇𝑇11 − 𝑇𝑇12)  =  𝐷𝐷1ℎ𝐷𝐷1 + 𝐵𝐵1ℎ𝐵𝐵1 − 𝐹𝐹1ℎ𝐹𝐹1 (3.29) 

where 𝑚̇𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is mass flowrate of the water circulation loop, 𝐶𝐶𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the specific heat of 

water, T11 is the temperature of water entering the first effect, and T12 is the temperature of 

water leaving the first effect. 

The required tube surface area (Ae) of each effect for complete in-tube condensation 

can be calculated considering the temperature difference driving the condensation process 

between the tube (𝑇𝑇𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and shell (𝑇𝑇𝑒𝑒) sides as follows: 

𝐷𝐷𝑐𝑐∆ℎ𝐷𝐷𝑐𝑐 = 𝑈𝑈𝑒𝑒𝐴𝐴𝑒𝑒(𝑇𝑇𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑒𝑒) (3.30) 

where 𝑇𝑇𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the saturation temperature of the distillate from the previous effect, 𝑇𝑇𝑒𝑒 is the 

temperature of the effect, and 𝑈𝑈𝑒𝑒 is the overall heat transfer coefficient.  



www.manaraa.com

28 

 

In the flash box (cf. Fig. 3.3), the effect condensed distillate (Dc) and condensed 

distillate from the previous effects (𝐷𝐷𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ) are mixed. Here, the mixed condensed distillate 

is depressurized to its current effect pressure (pe) in which a part of the incoming distillate 

stream is then flash vaporized (𝐷𝐷𝑓𝑓𝑓𝑓). As shown in Fig. 3.3, the flashed distillate vapor 

leaving the flash box and the distillate vapor generated 

in the current effect are mixed in the feed heater 

before being condensed in the next effect. The 

remaining condensed distillate (𝐷𝐷𝑏𝑏𝑏𝑏) is also blown out 

to the next flash box. The mass and energy balance 

equations for the flash box can be expressed as: 

𝐷𝐷𝑐𝑐 + 𝐷𝐷𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑓𝑓𝑓𝑓 + 𝐷𝐷𝑏𝑏𝑏𝑏   (3.31) 

𝐷𝐷𝑐𝑐ℎ𝐷𝐷𝑐𝑐 + 𝐷𝐷𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖ℎ𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑓𝑓𝑓𝑓ℎ𝐷𝐷𝑓𝑓𝑓𝑓 + 𝐷𝐷𝑏𝑏𝑏𝑏ℎ𝐷𝐷𝑏𝑏𝑏𝑏 (3.32) 

where ℎ𝐷𝐷𝑐𝑐, ℎ𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖 , ℎ𝐷𝐷𝑓𝑓𝑓𝑓, and ℎ𝐷𝐷𝑏𝑏𝑏𝑏 are enthalpies of the condensed distillate from the current 

effect, the distillate blown in from the previous flash box, the distillate flashed vaporized 

in the current flash box, and the distillate blown out from the current flash box, respectively.  

Feed heaters (cf. Fig. 3.3) recover heat and thus reduce thermal energy required in the 

first MED effect. Here, heat released by a partial condensation of the distillate vapor from 

the effect and the flashed distillated vapor from the flash box is supplied to the feed 

seawater. A terminal temperature difference of 5°C is considered to define amount of heat 

Figure 3. 3. A schematic of the MED 
effect consisting of a MED effect, a flash 

box, and a feed heater. 
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transferred between the streams. The energy balance between the seawater and the distillate 

vapor in the feed heater can be written as: 

(𝐷𝐷 + 𝐷𝐷𝑓𝑓𝑓𝑓)(ℎ𝐷𝐷𝑐𝑐
𝑖𝑖𝑖𝑖 − ℎ𝐷𝐷𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑚̇𝑚𝐹𝐹(ℎ𝑚̇𝑚𝐹𝐹
𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ𝑚̇𝑚𝐹𝐹

𝑖𝑖𝑖𝑖 )  (3.33) 

(𝐷𝐷 + 𝐷𝐷𝑓𝑓𝑓𝑓)(ℎ𝐷𝐷𝑐𝑐
𝑖𝑖𝑖𝑖 − ℎ𝐷𝐷𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑈𝑈𝐹𝐹𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹 (𝑇𝑇𝑚̇𝑚𝐹𝐹
𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑚̇𝑚𝐹𝐹

𝑜𝑜𝑜𝑜𝑜𝑜) (𝑙𝑙𝑙𝑙
𝑇𝑇𝐷𝐷𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑚̇𝑚𝐹𝐹

𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝐷𝐷𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑚̇𝑚𝐹𝐹
𝑖𝑖𝑖𝑖 )�  

(3.34) 

where ℎ𝐷𝐷𝑐𝑐
𝑖𝑖𝑖𝑖  is enthalpy of the distillate vapor entering the feed heater, ℎ𝐷𝐷𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜 is enthalpy of 

the distillate vapor leaving the feed heater, 𝑚̇𝑚𝐹𝐹 is mass flowrate of the feed entering the 

feed heater, ℎ𝑚̇𝑚𝐹𝐹
𝑖𝑖𝑖𝑖  is enthalpy of the feed seawater entering the feed heater, and ℎ𝑚̇𝑚𝐹𝐹

𝑜𝑜𝑜𝑜𝑜𝑜 is 

enthalpy of the feed seawater leaving the feed heater.  

To validate the developed thermodynamic model, results obtained from the MED unit 

is compared against those of Mistry et al. [105]. For the validation purpose, input 

parameters provided to the present model are similar to Mistry et al. [105]. Results 

compared at different operating conditions showed an excellent agreement with a 

maximum deviation of less than 2%. The 

slight difference in results were rooted in 

estimation of brine properties at high 

salinity levels. Fig. 3.4 showing 

performance ratios obtained from the 

present model and those of Mistry et al.  
Figure 3. 4. A comparison between performance ratios 
of the present model with those of Mistry et al. [105]. 
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[105] indicates an excellent agreement at different recovery ratios.  
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4 Results and Discussion 
The thermodynamic model discussed above is employed to understand energy 

performance and size of the proposed sorption-based ZLD desalination system (i.e., 

thermal comp.) at different thermodynamic conditions and recovery ratios. Performance 

metrics of the proposed system are also studied at different number of MED effects to 

optimize system configuration. In addition, the results are compared against a MED system 

coupled with a FC heat exchanger achieving the ZLD operation through thermal 

evaporation alone (i.e., thermal evap.). Table 4.1 summarizes fixed input parameters 

considered for the thermodynamic modeling. 

Table 4. 1  Fixed input parameters considered for the thermodynamic modeling. 

Parameter Value 

Brine crystallizer operating temperature, 𝑇𝑇𝐵𝐵𝐵𝐵 29.25°C 

Seawater temperature at the inlet of the ZLD condenser, 𝑇𝑇𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖  23°C 

Seawater temperature at the outlet of the ZLD condenser, 𝑇𝑇𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 27°C 

Temperature difference b/w MED effects, 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 3.75°C 

Minimum terminal temperature difference b/w streams in feed heater, 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹 5°C 

Mass flow rate of the feed seawater, 𝑚̇𝑚𝐹𝐹 2.5 kg/s 

Salinity of the feed, 𝑋𝑋𝐹𝐹 42 g/kg 

Effectiveness of the solution heat exchanger, 𝜀𝜀 0.8 
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Fig. 4.1 shows overall energy flow of the proposed sorption-based ZLD system with 

six MED effects at a MED recovery ratio of 80%. As shown, the system accepts 574.7 kW 

of thermal energy at 113°C (i.e., T9) to regenerate the LiBr solution in the desorber module, 

and rejects the same net energy (through distillate in MED, ZLD, and desorption units 

minus the feedwater). It also shows the operating temperature range of each unit of the 

system. Table 4.2 summarizes detailed operating conditions of the system shown in Fig. 

4.1. The water vapor generated during the desorption process (i.e., point 7) condenses at a 

temperature of 89.9°C in the DU condenser module. The 486.7 kW latent heat of the 

condensation process is harvested by the closed water circulation loop rising its 

temperature to 52.75°C (i.e., T11). The closed water loop delivers 861 kW thermal energy 

to the first MED effect generating distillate vapor at a temperature of 51.75°C (i.e., TD1). 

The latent heat of the condensing distillate vapor generated in each MED effect drives the 

Figure 4. 1. Overall energy flow and respective unit temperature 
ranges of the proposed sorption-based ZLD system with six 

MED effects at a MED recovery ratio of 80%. 
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next MED effect. The brine leaving the last MED effect at a temperature of 33°C enters 

the FC heat exchanger and the brine crystallizer to get vaporized and thus achieve the ZLD 

operation. The latent heat required for the brine vaporization in the crystallizer module 

operating at a temperature of 29.25°C (i.e., T18) is supplied by the FC heat exchanger. The 

condensing distillate vapor of the last MED effect and the closed water circulation loop 

provide the heat input of the FC heat exchanger. Capturing the distillate vapor produced in 

the ZLD unit (i.e., point 15), the strong LiBr solution leaving the desorber module (i.e., T6) 

establishes the ZLD operating pressure of 4.067 kPa. The example shown here utilizes a 

total energy consumption of 66.65 kWhth/m3 of treated water to achieve a complete ZLD 

operation. 

Table 4. 2 Operating conditions of the proposed sorption-based ZLD system with six MED effects at a 

MED recovery ratio of 80%. 

Unit Module Point T [oC] P [kPa] ṁ [kg/s] Xbrine or xLiBr 

Desorption 
unit 

Desorber 
(Q = 574.7 kW) 

9 (Motive steam) 113 - 0.2587 - 

10 (Motive steam) 113 - 0.2587 - 

3 (LiBr) 91.15 16.15 1.291 0.5418 

4 (LiBr) 112.50 16.15 1.091 0.6411 

7 (Water vapor) 89.91 16.15 0.2 0 g/kg 

Condenser 
(Q = 486.7 kW)  

8 (Liquid water) 55.50 16.15 0.2 0 g/kg 

11 (Closed loop) 52.75 - 102.5 - 

Solution HX 
(Q = 84.53 kW) 

2 (LiBr) 60 16.15 1.291 0.5418 

5 (LiBr) 70.50 16.15 1.091 0.6411 

ZLD unit 
Absorber 
(Q =552.2 kW) 

6 (LiBr) 70.50 4.067 1.091 0.6411 

1 (LiBr) 60 4.067 1.291 0.5418 

13 (Circ. loop) 50.34 - 102.5 - 
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14 (Circ. loop) 51.62 - 102.5 - 

Crystallizers 

15 (Water vapor) 29.25 4.067 0.2 0 g/kg 

18 (Brine slurry) 29.25 4.067 0.5 210 g/kg 

19 (Solid salt) 29.25 4.067 0.105 Pure salt 

FC HX 
(Q = 987.5 kW) 

16 (Water vapor) 33 5.035 0.3337 0 g/kg 

17 (Liquid water) 33 5.035 0.3337 0 g/kg 

12 (Circ. loop) 50.75 - 102.5 - 

MED unit 

Effect 1 
(Q = 861.1 kW) 

Feed brine, F1 46.75 13.47 2.5 42 g/kg 

Distillate vapor, D1 51.75 13.47 0.3411 0 g/kg 

Effect 2 
(Q = 775.3 kW) 

Feed brine, F2 51.75 13.47 2.159 48.64 g/kg 

Distillate vapor, D2 48 11.18 0.3382 0 g/kg 

Effect 3 
(Q = 776.7 kW) 

Feed brine, F3 48 11.18 1.821 57.67 g/kg 

Distillate vapor, D3 44.25 9.231 0.3354 0 g/kg 

Effect 4 
(Q =778.2 kW) 

Feed brine, F4 44.25 9.231 1.485 70.69 g/kg 

Distillate vapor, D4 40.5 7.584 0.3326 0 g/kg 

Effect 5 
(Q = 779.7 kW) 

Feed brine, F5 40.5 7.584 1.153 91.09 g/kg 

Distillate vapor, D5 36.75 6.197 0.3298 0 g/kg 

Effect 6 
(Q = 771.2 kW) 

Feed brine, F6 36.75 6.197 0.8229 127.6 g/kg 

Distillate vapor, D6 33 5.035 0.3229 0 g/kg 
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  Fig. 4.2 shows specific thermal energy required for the first MED effect of the 

proposed sorption-based ZLD system as a function of the MED recovery ratio (i.e., RRMED 

or recovery ratio associated with the MED unit) at different numbers of MED effects. As 

shown, required thermal energy of the first MED effect increases as amount of high purity 

water produced increases (i.e., higher RRMED) at a particular number of MED effects. This 

is attributed to greater amount of distillate vapor generated at higher recovery ratios of the 

MED unit, thus requiring additional input thermal energy for the evaporation process. In 

addition, at a fixed recovery ratio, thermal energy of the first MED effect per unit of 

distillate water produced decreases as number of the MED effects increases. This is 

because the latent heat of the condensing distillate vapor is successively recovered through 

a larger number of the MED effects, thereby reducing the input thermal energy of the first 

MED effect. 

Figure 4. 2. Specific thermal energy of the first MED effect versus 
MED recovery ratio at different and number of MED effects 
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  The brine leaving the last MED effect enters the FC heat exchanger and brine 

crystallizer modules to be fully desalted. The specific thermal energy required for the ZLD 

treatment is partially supplied by the latent heat of the condensing distillate vapor leaving 

the last MED effect. However, this heat is typically not sufficient for full vaporization of 

the brine slurry of the ZLD unit. Fig. 4.3 shows additional specific energy needed for a 

complete ZLD operation at different MED recovery ratios and number of MED effects. As 

shown, additional thermal energy of the ZLD unit per unit of the purified water generated 

decreases as recovery ratio of the MED unit increases. Amount of the feed seawater 

vaporized in the MED unit increases at higher recovery ratios, thereby decreasing required 

thermal evaporation load of the ZLD unit. Furthermore, additional specific thermal energy 

required for the ZLD treatment increases when the number of the MED effect increases. 

This is attributed to thermal energy exchanged per MED effect, which decreases as the 

number of the MED effects increases. This in turn reduces thermal energy supplied by the 

last MED effect, thereby increasing external energy needed for the ZLD unit. 

Figure 4. 3. Additional specific thermal energy required for the ZLD 
treatment at different MED recovery ratios and number of MED effects 
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The water vapor produced in the ZLD crystallizer is partially absorbed by the strong 

LiBr solution of the absorber module. The absorbed water vapor is then thermally rejected 

in the desorption unit and subsequently condensed. Both heat generated during the 

absorption process and latent heat released in the condenser module of the DU are collected 

by the closed water circulation loop to supply additional thermal energy required for the 

ZLD treatment in the crystallizer module and evaporation in the first MED effect. Fig. 4.4 

shows heat produced during the absorption process per unit of the desalinated water 

generated at different MED recovery ratios. As mentioned, thermal vaporization load of 

the brine crystallizer decreases at higher recovery ratios of the MED unit. This in turn 

decreases amount of vapor absorbed by the LiBr solution, thereby reducing heat of the 

absorption process. It should be mentioned that the above trend is independent of the 

number of the MED effects and only depends on recovery ratios of the MED unit.  

 Figure 4. 4. Specific heat released during the absorption 
process at different recovery ratios of the MED unit. 
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Fig. 4.5 shows total thermal energy required by the proposed thermal compression 

based ZLD system per unit of the desalinated water produced at different MED recovery 

ratios. This thermal energy is supplied to the desorber module of the system. It is evident 

that required specific thermal energy of the proposed thermal compression system 

decreases as recovery ratio of the MED unit increases. This is because the additional energy 

required for the ZLD operation (cf. Fig. 4.3) significantly declines with the MED recovery 

ratio, thereby decreasing the total input thermal energy of the system at higher values of 

RRMED.  

In addition, Fig. 4.5 shows specific thermal energy required by a multiple-effect 

thermal evaporation approach to achieve the ZLD operation for reference. In the thermal 

evaporation approach, the brine leaving the last MED effect is sent to a thermally driven 

FC heat exchanger module to be fully vaporized and then condensed by the cooling effect 

of the feed seawater (i.e., no absorber modules included). Furthermore, Fig. 4.5 illustrates 

performance of the electrically-driven mechanical vapor compressors (i.e., mechanical 

compression) utilized in advanced ZLD brine crystallizers. A site-to-source energy 

Figure 4. 5. Specific total energy required by the proposed 
ZLD system at different MED recovery ratios. 
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conversion ratio of 3.06 with a combined power generation and transmission efficiency of 

32.6% is used to estimate an equivalent thermal energy consumption. Consuming an 

electric energy range of 52-66 kWhe/m3, state-of-the-art mechanical compression based 

ZLD systems have an equivalent thermal energy usage of 160-200 kWhth/m3 [16]. As 

shown, required specific thermal energy of the proposed thermal compression system is 

significantly lower than that of both thermal evaporation and mechanical compression 

based ZLD approaches owing mainly to the recovery of the heat generated by the ZLD 

absorber and DU condenser modules. 

 Fig. 4.6 shows gained output ratio (GOR) of the proposed ZLD desalination system 

and a thermal evaporation based ZLD 

approach at different MED recovery 

ratios. The GOR representing the first 

law efficiency of a desalination plant is 

defined as heat required to evaporate the 

product water to that of the system 

input. As shown, the GOR of the 

proposed ZLD system increases at 

higher recovery ratios of the MED unit. This is attributed to the total input thermal energy 

to the system (cf. Fig. 4.5), which decreases as recover ratio of the MED unit increases. In 

addition, the GOR of the proposed ZLD system is significantly higher than that of the 

thermal evaporation based ZLD approach (e.g., 10 versus 5.5 at a MED recovery ratio of 

 
Figure 4. 6. Overall gained output ratio of the proposed 

ZLD system at different MED recovery ratios. 
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80%) mainly due to the difference existing between their input energy levels (cf. Fig. 4.5). 

It can be also seen that the GOR of both thermal compression and evaporation systems 

achieving the ZLD operation are insensitive to the number of MED effects.  

Fig. 4.7 depicts required overall heat transfer coefficient (i.e., UA) of the proposed ZLD 

system per unit of the distillate water produced at different MED recovery ratios. While 

the GOR represents operating expense (OPEX) of a desalination plant, the specific overall 

UA indicates capital expenditure (CAPEX) of a system. As shown, for a fixed recovery 

ratio, the specific overall UAs required by the proposed ZLD system and the thermal 

evaporation based ZLD approach decrease as number of the MED effects increases. This 

is mainly because of a fixed logarithmic mean temperature difference (LMTD) assumed 

across each MED effect (cf. Table 4.1), which increases the overall LTMD across the MED 

unit as number of the MED effects increases. This in turn reduces the overall required UA 

per unit of product water. In addition, the specific overall UA decreases at higher recovery 

ratios of the MED unit. This can be attributed to the required overall UAs of the ZLD and 

Figure 4. 7. Specific overall heat transfer coefficient of the 
proposed ZLD system at different MED recovery ratios 
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desorption units, which decrease as recovery ratio of the MED unit increases. Furthermore, 

the specific overall UA of the proposed sorption-based ZLD system is higher than that of 

the thermal evaporation based ZLD approach mainly due to the additional heat transfer 

area required by the absorber and desorber modules. 
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5 Future Scope 
The present thermodynamic analysis showed the promise of the proposed sorption-based 

ZLD system in reducing total energy consumption. As discussed, the thermal compression 

process could significantly lower required input energy for the ZLD treatment compared 

to that of the thermal evaporation and MVC-driven ZLD systems. The system performance 

can be further enhanced by desiccant rejection at higher temperatures. This enables the 

ability to harvest higher exergies available at higher temperatures. This can be achieved 

through desorbing the distillate vapor in multiple stages in contrast to a single-stage 

desorption unit. There are two possible configurations for multiple stage desorption, series 

and parallel. Uplifting of the operating temperature is a major problem in conventional 

thermal desalination systems due to scaling/fouling issue on heat exchanger surfaces.  Scale 

formation increases thermal resistances thereby increasing operational cost of the system. 

Implementing the current design enables a way to uplift the operating temperatures by 

bypassing the scaling issue. Furthermore, the proposed technology could be furthered 

evaluated through careful experimental testing.   
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6 Conclusion 
A novel desiccant-based ZLD desalination system in which a MED unit is uniquely 

embedded at the heart of an absorption-desorption system was introduced. The new system 

eliminates the need for energy-intensive electrically-driven mechanical vapor compressors 

currently utilized in state-of-the-art ZLD brine crystallizers. Thermal performance of the 

proposed ZLD system was comprehensively analyzed through a detailed thermodynamic 

modeling at various thermohydraulic conditions. Major conclusions drawn from the 

present study include: 

• The proposed ZLD system employing the strong hygroscopic properties of the aqueous 

LiBr salt is able to harvest the heat generated by the ZLD absorber and DU condenser 

modules. 

• Thermal energy consumption of the new thermal compression based ZLD system is 

significantly lower than that of both thermal evaporation and mechanical compression 

based ZLD approaches.  

• The overall GOR of the proposed ZLD system is substantially higher than that of the 

thermal evaporation based ZLD approach (e.g., 10 versus 5.5 at a MED recovery ratio 

of 80%).  

• Overall UA of the proposed sorption-based ZLD system per unit of the product water 

is higher than that of the thermal evaporation based ZLD approach mainly due to the 

additional heat transfer area required by the absorber and desorber modules. 
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 In summary, the present study confirms that the sorption-based thermal compression 

technology could offer new pathways for ZLD treatment of high salinity brines in a 

promising energy-efficient and economical manner. 
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	Value
	Parameter
	29.25°C
	Brine crystallizer operating temperature, 𝑇𝐵𝐶
	23°C
	Seawater temperature at the inlet of the ZLD condenser, 𝑇𝑠𝑤𝑖𝑛
	27°C
	Seawater temperature at the outlet of the ZLD condenser, 𝑇𝑠𝑤𝑜𝑢𝑡
	3.75°C
	Temperature difference b/w MED effects, 𝑇𝑇𝐷𝑒
	5°C
	Minimum terminal temperature difference b/w streams in feed heater, 𝑇𝑇𝐷𝐹𝐻
	2.5 kg/s
	Mass flow rate of the feed seawater, 𝑚𝐹
	42 g/kg
	Salinity of the feed, 𝑋𝐹
	0.8
	Effectiveness of the solution heat exchanger, 𝜀
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